Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.968
Filtrar
1.
Animal ; 18(4): 101127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574452

RESUMO

Supplementing a diet with rumen-protected amino acids (AAs) is a common feeding strategy for efficient production. For a cost-effective use of rumen-protected AA, the accurate bioavailability of rumen-protected amino acids should be known and their metabolism after absorption needs to be well understood. The current study determined the bioavailability, absorption, utilization, and excretion of rumen-protected Lys (RP-Lys). Four ruminally cannulated cows in a 4 × 4 Latin square design (12 d for diet adaptation; 5 or 6 d for total collections) received the following treatments: L0, a basal diet; L25, the basal diet and L-Lys infused into the abomasum to provide 25.9 g/d L-Lys; L50, the basal diet and L-Lys infused into the abomasum to provide 51.8 g/d L-Lys; and RPL, the basal diet supplemented with 105 g/d (as-is) of RP-Lys to provide 26.7 g of digestible Lys. During the last 5 or 6 d in each period, 15N-Lys (0.38 g/d) was infused into the abomasum for all cows to label the pool of AA, and the total collection of milk, urine, and feces were conducted. 15N enrichment of samples on d 4 and 5 were used to calculate the bioavailability and Lys metabolism. We used a model containing a fast AA turnover (≤ 5 d) and slow AA turnover pool (> 5 d) to calculate fluxes of Lys. The Lys flux to the fast AA turnover pool (absorbed Lys + Lys from the slow AA turnover pool to fast AA turnover pool) was calculated using 15N enrichment of milk Lys. The flux of Lys from the fast AA turnover pool to milk and urine was calculated using 15N transfer into milk and urine. Then, absorbed Lys was estimated by the sum of Lys flux to milk and urine assuming no net utilization of Lys by body tissues. Duodenal Lys flow was estimated by 15N enrichment of fecal Lys. The bioavailability of RP-Lys was calculated from duodenal Lys flows and Lys absorption for RPL. Increasing Lys supply from L25 to L50 increased Lys utilization for milk by 9 g/d but also increased urinary excretion by 10 g/d. For RPL, absorbed Lys was estimated to be 136 g/d where 28 g of absorbed Lys originated from RP-Lys. In conclusion, 68% of bioavailability was obtained for RP-Lys. The Lys provided from RP-Lys was not only utilized for milk protein (48%) but also excreted in urine (20%) after oxidation.


Assuntos
Lactação , Lisina , Feminino , Bovinos , Animais , Lisina/metabolismo , Rúmen/metabolismo , Disponibilidade Biológica , Dieta/veterinária , Aminoácidos/metabolismo , Proteínas do Leite/metabolismo , Aminas/metabolismo , Metionina/metabolismo
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 236-243, 2024 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-38557374

RESUMO

OBJECTIVES: To explore the changes in gut microbiota and levels of short-chain fatty acids (SCFA) in infants with cow's milk protein allergy (CMPA), and to clarify their role in CMPA. METHODS: A total of 25 infants diagnosed with CMPA at Children's Hospital Affiliated to Zhengzhou University from August 2019 to August 2020 were enrolled as the CMPA group, and 25 healthy infants were selected as the control group. Fecal samples (200 mg) were collected from both groups and subjected to 16S rDNA high-throughput sequencing technology and liquid chromatography-mass spectrometry to analyze the changes in gut microbial composition and metabolites. Microbial diversity was analyzed in conjunction with metabolites. RESULTS: Compared to the control group, the CMPA group showed altered gut microbial structure and significantly increased α-diversity (P<0.001). The abundance of Firmicutes, Clostridiales and Bacteroidetes was significantly decreased, while the abundance of Sphingomonadaceae, Clostridiaceae_1 and Mycoplasmataceae was significantly increased in the CMPA group compared to the control group (P<0.001). Metabolomic analysis revealed reduced levels of acetic acid, butyric acid, and isovaleric acid in the CMPA group compared to the control group, and the levels of the metabolites were positively correlated with the abundance of SCFA-producing bacteria such as Faecalibacterium and Roseburia (P<0.05). CONCLUSIONS: CMPA infants have alterations in gut microbial structure, increased microbial diversity, and decreased levels of SCFA, which may contribute to increased intestinal inflammation.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade a Leite , Lactente , Criança , Feminino , Animais , Bovinos , Humanos , Hipersensibilidade a Leite/diagnóstico , Ácidos Graxos Voláteis , Bactérias/genética , Ácido Butírico , Proteínas do Leite
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 230-235, 2024 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-38557373

RESUMO

OBJECTIVES: To explore the risk factors associated with cow's milk protein allergy (CMPA) in infants. METHODS: This study was a multicenter prospective nested case-control study conducted in seven medical centers in Beijing, China. Infants aged 0-12 months were included, with 200 cases of CMPA infants and 799 control infants without CMPA. Univariate and multivariate logistic regression analyses were used to investigate the risk factors for the occurrence of CMPA. RESULTS: Univariate logistic regression analysis showed that preterm birth, low birth weight, birth from the first pregnancy, firstborn, spring birth, summer birth, mixed/artificial feeding, and parental history of allergic diseases were associated with an increased risk of CMPA in infants (P<0.05). Multivariate logistic regression analysis revealed that firstborn (OR=1.89, 95%CI: 1.14-3.13), spring birth (OR=3.42, 95%CI: 1.70-6.58), summer birth (OR=2.29, 95%CI: 1.22-4.27), mixed/artificial feeding (OR=1.57, 95%CI: 1.10-2.26), parental history of allergies (OR=2.13, 95%CI: 1.51-3.02), and both parents having allergies (OR=3.15, 95%CI: 1.78-5.56) were risk factors for CMPA in infants (P<0.05). CONCLUSIONS: Firstborn, spring birth, summer birth, mixed/artificial feeding, and a family history of allergies are associated with an increased risk of CMPA in infants.


Assuntos
Hipersensibilidade a Leite , Nascimento Prematuro , Lactente , Gravidez , Feminino , Animais , Bovinos , Recém-Nascido , Humanos , Hipersensibilidade a Leite/etiologia , Estudos de Casos e Controles , Estudos Prospectivos , Nascimento Prematuro/induzido quimicamente , Fatores de Risco , Proteínas do Leite
4.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612844

RESUMO

In addition to its association with milk protein synthesis via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, JAK2 also affects milk fat synthesis. However, to date, there have been no reports on the effect of JAK2 on ovine mammary epithelial cells (OMECs), which directly determine milk yield and milk contents. In this study, the coding sequence (CDS) region of ovine JAK2 was cloned and identified and its tissue expression and localization in ovine mammary glands, as well as its effects on the viability, proliferation, and milk fat and casein levels of OMECs, were also investigated. The CDS region of ovine JAK2, 3399 bp in length, was cloned and its authenticity was validated by analyzing its sequence similarity with JAK2 sequences from other animal species using a phylogenetic tree. JAK2 was found to be expressed in six ovine tissues, with the highest expression being in the mammary gland. Over-expressed JAK2 and three groups of JAK2 interference sequences were successfully transfected into OMECs identified by immunofluorescence staining. When compared with the negative control (NC) group, the viability of OMECs was increased by 90.1% in the pcDNA3.1-JAK2 group. The over-expression of JAK2 also increased the number and ratio of EdU-labeled positive OMECs, as well as the expression levels of three cell proliferation marker genes. These findings show that JAK2 promotes the viability and proliferation of OMECs. Meanwhile, the triglyceride content in the over-expressed JAK2 group was 2.9-fold higher than the controls and the expression levels of four milk fat synthesis marker genes were also increased. These results indicate that JAK2 promotes milk fat synthesis. Over-expressed JAK2 significantly up-regulated the expression levels of casein alpha s2 (CSN1S2), casein beta (CSN2), and casein kappa (CSN3) but down-regulated casein alpha s1 (CSN1S1) expression. In contrast, small interfered JAK2 had the opposite effect to JAK2 over-expression on the viability, proliferation, and milk fat and milk protein synthesis of OMECs. In summary, these results demonstrate that JAK2 promotes the viability, proliferation, and milk fat synthesis of OMECs in addition to regulating casein expression in these cells. This study contributes to a better comprehension of the role of JAK2 in the lactation performance of sheep.


Assuntos
Caseínas , Leite , Feminino , Animais , Ovinos , Caseínas/genética , Filogenia , Proteínas do Leite , Células Epiteliais
5.
Sci Rep ; 14(1): 9117, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643232

RESUMO

Milk protein content is an important index to evaluate the quality and nutrition of milk. Accumulating evidence suggests that microRNAs (miRNAs) play important roles in bovine lactation, but little is known regarding the cross-kingdom regulatory roles of plant-derived exogenous miRNAs (xeno-miRNAs) in milk protein synthesis, particularly the underlying molecular mechanisms. The purpose of this study was to explore the regulatory mechanism of alfalfa-derived xeno-miRNAs on proliferation and milk protein synthesis in bovine mammary epithelial cells (BMECs). Our previous study showed that alfalfa miR159a (mtr-miR159a, xeno-miR159a) was highly expressed in alfalfa, and the abundance of mtr-miR159a was significantly lower in serum and whey from high-protein-milk dairy cows compared with low-protein-milk dairy cows. In this study, mRNA expression was detected by real-time quantitative PCR (qRT-PCR), and casein content was evaluated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis were detected using the cell counting kit 8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, western blot, and flow cytometry. A dual-luciferase reporter assay was used to determine the regulation of Protein Tyrosine Phosphatase Receptor Type F (PTPRF) by xeno-miR159a. We found that xeno-miR159a overexpression inhibited proliferation of BMEC and promoted cell apoptosis. Besides, xeno-miR159a overexpression decreased ß-casein abundance, and increased α-casein and κ-casein abundance in BMECs. Dual-luciferase reporter assay result confirmed that PTPRF is a target gene of xeno-miR159a. These results provide new insights into the mechanism by which alfalfa-derived miRNAs regulate BMECs proliferation and milk protein synthesis.


Assuntos
MicroRNAs , Proteínas do Leite , Feminino , Bovinos , Animais , Proteínas do Leite/metabolismo , Medicago sativa/genética , Medicago sativa/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Glândulas Mamárias Animais/metabolismo , Caseínas/genética , Caseínas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Luciferases/metabolismo , Células Epiteliais/metabolismo
6.
Anim Biotechnol ; 35(1): 2334725, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38623994

RESUMO

The lactation character of dairy goats is the most important characteristic, and milk protein is an important index to evaluate milk quality. Casein accounts for more than 80% of the total milk protein in goat milk and is the main component of milk protein. Using GMECs (goat mammary epithelial cells) as the research object, the CHECK2 vector of the CSN1S1 gene and the overexpression vector of pcDNA 3.1 were constructed, and the mimics of miR-2284b and the interfering RNA of CSN1S1 were synthesized. Using PCR, RT-qPCR, a dual luciferase activity detection system, EdU, CCK8, cell apoptosis detection and ELISA detection, we explored the regulatory mechanism and molecular mechanism of miR-2284b regulation of αs1-casein synthesis in GMECs. miR-2284b negatively regulates proliferation and apoptosis of GMECs and αs1-casein synthesis. Two new gene sequences of CSN1S1 were discovered. CSN1S1-1/-2 promoted the proliferation of GMECs and inhibited cell apoptosis. However, it had no effect on αs1-casein synthesis. MiR-2284b negatively regulates αs1-casein synthesis in GMECs by inhibiting the CSN1S1 gene. These results all indicated that miR-2284b could regulate αs1-casein synthesis, thus playing a theoretical guiding role in the future breeding process of dairy goats and accelerating the development of dairy goat breeding.


Assuntos
Caseínas , MicroRNAs , Feminino , Animais , Caseínas/genética , Caseínas/metabolismo , Proteínas do Leite , Cabras/fisiologia , Células Epiteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Glândulas Mamárias Animais/metabolismo
7.
J Agric Food Chem ; 72(12): 6414-6423, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501560

RESUMO

Previous research has demonstrated that in pregnant mice deficient in l-methionine (Met), the mixture of the dipeptide l-methionyl-l-methionine (Met-Met) with Met was more effective than Met alone in promoting mammogenesis and lactogenesis. This study aimed to investigate the role of a novel long noncoding RNA (lncRNA), named mammary gland proliferation-associated lncRNA (MGPNCR), in these processes. Transcriptomic analysis of mammary tissues from Met-deficient mice, supplemented either with a Met-Met/Met mixture or with Met alone, revealed significantly higher MGPNCR expression in the Met group compared to the mixture group, a finding recapitulated in a mammary epithelial cell model. Our findings suggested that MGPNCR hindered mammogenesis and milk protein synthesis by binding to eukaryotic initiation factor 4B (eIF4B). This interaction promoted the dephosphorylation of eIF4B at serine-422 by enhancing its association with protein phosphatase 2A (PP2A). Our study sheds light on the regulatory mechanisms of lncRNA-mediated dipeptide effects on mammary cell proliferation and milk protein synthesis. These insights underscore the potential benefits of utilizing dipeptides to improve milk protein in animals and potentially in humans.


Assuntos
Fatores de Iniciação em Eucariotos , Metionina , RNA Longo não Codificante , Gravidez , Humanos , Feminino , Animais , Camundongos , Metionina/metabolismo , RNA Longo não Codificante/metabolismo , Dipeptídeos/metabolismo , Racemetionina/metabolismo , Proteínas do Leite/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo
8.
Anim Biotechnol ; 35(1): 2322542, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38426941

RESUMO

Milk urea (MU) concentration is proposed as an indicator trait for breeding toward reduced nitrogen (N) emissions and leaching in dairy. We selected 20 German Holstein cows based on MU breeding values, with 10 cows each having low (LMUg) and high (HMUg) MU genetic predisposition. Using RNA-seq, we characterized these cows to unravel molecular pathways governing post-absorptive body N pools focusing on renal filtration and reabsorption of nitrogenous compounds, hepatic urea formation and mammary gland N excretion. While we observed minor adjustments in cellular energy metabolism in different tissues associated with different MU levels, no transcriptional differences in liver ammonia detoxification were detected, despite significant differences in MU between the groups. Differential expression of AQP3 and SLC38A2 in the kidney provides evidence for higher urea concentration in the collecting duct of LMU cows than HMU cows. The mammary gland exhibited the most significant differences, particularly in tricarboxylic acid (TCA) cycle genes, amino acid transport, tRNA binding, and casein synthesis. These findings suggest that selecting for lower MU could lead to altered urinary urea (UU) handling and changes in milk protein synthesis. However, given the genetic variability in N metabolism components, the long-term effectiveness of MU-based selection in reducing N emissions remains uncertain.


Assuntos
Lactação , Leite , Feminino , Bovinos/genética , Animais , Leite/química , Proteínas do Leite , Ureia/análise , Ureia/metabolismo , RNA-Seq , Nitrogênio/metabolismo , Dieta/veterinária
9.
Sci Rep ; 14(1): 7569, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555284

RESUMO

Proteins and peptides found in human milk have bioactive potential to benefit the newborn and support healthy development. Research has been carried out on the health benefits of proteins and peptides, but many questions still need to be answered about the nature of these components, how they are formed, and how they end up in the milk. This study explored and elucidated the complexity of the human milk proteome and peptidome. Proteins and peptides were analyzed with non-targeted nanoLC-Orbitrap-MS/MS in a selection of 297 milk samples from the CHILD Cohort Study. Protein and peptide abundances were determined, and a network was inferred using Gaussian graphical modeling (GGM), allowing an investigation of direct associations. This study showed that signatures of (1) specific mechanisms of transport of different groups of proteins, (2) proteolytic degradation by proteases and aminopeptidases, and (3) coagulation and complement activation are present in human milk. These results show the value of an integrated approach in evaluating large-scale omics data sets and provide valuable information for studies that aim to associate protein or peptide profiles from biofluids such as milk with specific physiological characteristics.


Assuntos
Leite Humano , Proteoma , Recém-Nascido , Humanos , Leite Humano/química , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Estudos de Coortes , Peptídeos/metabolismo , Proteínas do Leite/análise
11.
World J Gastroenterol ; 30(7): 728-741, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515944

RESUMO

BACKGROUND: Liver injury is common in severe acute pancreatitis (SAP). Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes, which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis. Our previous study found that milk fat globule epidermal growth factor 8 (MFG-E8) alleviates acinar cell damage during SAP via binding to αvß3/5 integrins. MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy. AIM: To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux. METHODS: SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50 µg/kg cerulein plus lipopolysaccharide. mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAP-induced liver injury. Cilengitide, a specific αvß3/5 integrin inhibitor, was used to investigate the possible mechanism of MFG-E8. RESULTS: The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice, enhanced autophagy flux in hepatocyte, and worsened the degree of ferroptosis. Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner. Mechanistically, MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells. Cilengitide abolished MFG-E8's beneficial effects in SAP-induced liver injury. CONCLUSION: MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury. MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrin αVß3/5.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Pancreatite , Camundongos , Animais , Fator VIII , Pancreatite/induzido quimicamente , Pancreatite/complicações , Doença Aguda , Hepatócitos/metabolismo , Autofagia , Família de Proteínas EGF , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia
12.
Trop Anim Health Prod ; 56(3): 108, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507148

RESUMO

Saharan population in Algeria still depending on bovine milk, which suffers from serious constraints undermining its sustainability. Camelus dromedarius milk has experienced growing demand following the emerging market requirements for livestock production and dairy farming over the past decade. The present work aimed at analysing the effect of nutritional regime on milk quality. The differences in pH, Acidity D°, Ash and Fats were significant. The pH was negatively influenced by the intensification conditions such as the much higher use of concentrates. The major constituents of milk were strongly and positively correlated with barley, wheat bran, TN/Kg.DM (Total Nitrogen/ Kg. Dry Matter), Kg.DM, Concentrates and daily watering. The results showed that a good energy-protein balance around 73 g PDI/UFL (Protein Digestible in the Intestine/Energetic Forage Unit for milk production) was beneficial for a better milk protein ratio. The use of corn, soybeans, palm dates and VM-premix (Vitamin Mineral) supplementation were also favourable to the synthesis of fats. Crude fiber and cell walls were better valued in the synthesis of fats with the availability of concentrates and the increasing of TN /Kg.DM and VM-premix rate in dietary regime. The vitamin C content elevate following high ratio of UFL /Kg.DM and PDI/UFL. For thus, the influence of nutritional status can lead to major improvements that need also more advanced and detailed studies.


Assuntos
Camelus , Lactação , Feminino , Animais , Leite/química , Proteínas do Leite/análise , Zea mays , Gorduras/análise , Gorduras/metabolismo , Vitaminas/metabolismo , Dieta/veterinária , Silagem/análise , Rúmen/metabolismo
13.
Food Res Int ; 181: 114063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448113

RESUMO

The use of infant formulas (IFs) based on hydrolyzed cow's milk proteins to prevent cow's milk allergy (CMA) is highly debated. The risk of sensitization to milk proteins induced by IFs may be affected by the degree of hydrolysis (DH) as well as other physicochemical properties of the cow's milk-based protein hydrolysates within the IFs. The immunogenicity (specific IgG1 induction) and sensitizing capacity (specific IgE induction) of 30 whey- or casein-based hydrolysates with different physicochemical characteristics were compared using an intraperitoneal model of CMA in Brown Norway rats. In general, the whey-based hydrolysates demonstrated higher immunogenicity than casein-based hydrolysates, inducing higher levels of hydrolysate-specific and intact-specific IgG1. The immunogenicity of the hydrolysates was influenced by DH, peptide size distribution profile, peptide aggregation, nano-sized particle formation, and surface hydrophobicity. Yet, only the surface hydrophobicity was found to affect the sensitizing capacity of hydrolysates, as high hydrophobicity was associated with higher levels of specific IgE. The whey- and casein-based hydrolysates exhibited distinct immunological properties with highly diverse molecular composition and physicochemical properties which are not accounted for by measuring DH, which was a poor predictor of sensitizing capacity. Thus, future studies should consider and account for physicochemical characteristics when assessing the sensitizing capacity of cow's milk-based protein hydrolysates.


Assuntos
Hipersensibilidade a Leite , Soro do Leite , Humanos , Animais , Bovinos , Feminino , Lactente , Ratos , Caseínas , Hipersensibilidade a Leite/prevenção & controle , Hidrólise , Hidrolisados de Proteína , Proteínas do Soro do Leite , Proteínas do Leite , Imunoglobulina G , Peptídeos , Imunoglobulina E
14.
Biophys J ; 123(7): 885-900, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38433448

RESUMO

The specific recognition of peripheral membrane-binding proteins for their target membranes is mediated by a complex constellation of various lipid contacts. Despite the inherent complexities of the heterogeneous protein-membrane interface, the binding dependence of such proteins is, surprisingly, often reliably described by simple models such as the Langmuir Adsorption Isotherm or the Hill equation. However, these models were not developed to describe associations with two-dimensional, highly concentrated heterogeneous ligands such as lipid membranes. In particular, these models fail to capture the dependence on the lipid composition, a significant determinant of binding that distinguishes target from non-target membranes. In this work, we present a model that describes the dependence of peripheral proteins on lipid composition through an analytic expression for their association. The resulting membrane-binding equation retains the features of these simple models but completely describes the binding dependence on multiple relevant variables in addition to the lipid composition, such as protein and vesicle concentration. Implicit in this lipid composition dependence is a new form of membrane-based cooperativity that significantly differs from traditional solution-based cooperativity. We introduce the Membrane-Hill number as a measure of this cooperativity and describe its unique properties. We illustrate the utility and interpretational power of our model by analyzing previously published data on two peripheral proteins that associate with phosphatidylserine-containing membranes: The transmembrane immunoglobulin and mucin domain-containing protein 3 (TIM3) that employs calcium in its association, and milk fat globulin epidermal growth factor VIII (MFG-E8) which is completely insensitive to calcium. We also provide binding equations for systems that exhibit more complexity in their membrane-binding.


Assuntos
Cálcio , Proteínas do Leite , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Proteínas , Membranas/metabolismo , Lipídeos
15.
Theriogenology ; 220: 12-25, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457855

RESUMO

Although the association of maternal milk production with developmental programming of offspring has been investigated, there is limited information available on the relationship of maternal milk components with productive and reproductive performance of the offspring. Therefore, the present study was conducted to analyze the association of maternal milk fat and protein percentage and milk fat to protein ratio with birth weight, survival, productive and reproductive performance and AMH concentration in the offspring. In study I, data of birth weight, milk yield and reproductive variables of offspring born to lactating dams (n = 14,582) and data associated with average maternal milk fat percentage (MFP), protein percentage (MPP) and fat to protein ratio (MFPR) during 305-day lactation were retrieved. Afterwards, offspring were classified in various categories of MFP, MPP and MFPR. In study II, blood samples (n = 339) were collected from offspring in various categories of MFP, MPP and MFPR for measurement of serum AMH. Maternal milk fat percentage was positively associated with birth weight and average percentage of milk fat (APMF) and protein (APMP) and milk fat to protein ratio (FPR) during the first lactation, but negatively associated with culling rate during nulliparity in the offspring (P < 0.05). Maternal milk protein percentage was positively associated with birth weight, APMF, APMP, FPR and culling rate, but negatively associated with milk yield and fertility in the offspring (P < 0.05). Maternal FPR was positively associated with APMF and FPR, but negatively associated with culling rate, APMP and fertility in the offspring (P < 0.05). However, concentration of AMH in the offspring was not associated with MFP, MPP and MFPR (P > 0.05). In conclusion, the present study revealed that maternal milk fat and protein percentage and their ratio were associated with birth weight, survival, production and reproduction of the offspring. Yet it was a preliminary research and further studies are required to elucidate the mechanisms underlying these associations.


Assuntos
Lactação , Proteínas do Leite , Reprodução , Animais , Bovinos , Feminino , Peso ao Nascer , Leite/química , Leite/metabolismo , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Hormônio Antimülleriano/química , Hormônio Antimülleriano/metabolismo
16.
Nutrients ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474716

RESUMO

BACKGROUND: The milk fat globule membrane (MFGM) is a thin film that exists within the milk emulsion, suspended on the surface of milk fat globules, and comprises a diverse array of bioactive components. Recent advancements in MFGM research have sparked a growing interest in its biological characteristics and health-related functions. Thorough exploration and utilization of MFGM as a significant bioactive constituent in milk emulsion can profoundly impact human health in a positive manner. Scope and approach: This review comprehensively examines the current progress in understanding the structure, composition, physicochemical properties, methods of separation and purification, and biological activity of MFGM. Additionally, it underscores the vast potential of MFGM in the development of additives and drug delivery systems, with a particular focus on harnessing the surface activity and stability of proteins and phospholipids present on the MFGM for the production of natural emulsifiers and drug encapsulation materials. KEY FINDINGS AND CONCLUSIONS: MFGM harbors numerous active substances that possess diverse physiological functions, including the promotion of digestion, maintenance of the intestinal mucosal barrier, and facilitation of nerve development. Typically employed as a dietary supplement in infant formula, MFGM's exceptional surface activity has propelled its advancement toward becoming a natural emulsifier or encapsulation material. This surface activity is primarily derived from the amphiphilicity of polar lipids and the stability exhibited by highly glycosylated proteins.


Assuntos
Glicolipídeos , Glicoproteínas , Lactente , Humanos , Emulsões , Glicolipídeos/química , Glicoproteínas/química , Proteínas do Leite/química , Gotículas Lipídicas , Emulsificantes
17.
J Agric Food Chem ; 72(11): 6040-6052, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38454851

RESUMO

One type of large and intricate post-translational modification of milk proteins that has significant biological implications is phosphorylation. The characterization of phosphoproteins found in the bovine milk fat globule membrane (MFGM) is still mostly unknown. Here, label-free phosphoproteomics was used to identify 94 phosphorylation sites from 54 MFGM phosphoproteins in bovine colostrum (BC) and 136 phosphorylation sites from 91 MFGM phosphoproteins in bovine mature milk (BM). αs1-Casein and ß-casein were the most phosphorylated proteins in bovine colostrum. In bovine mature milk, perilipin-2 was the protein with the greatest number of phosphorylation sites. The results show that bovine colostrum MFGM phosphoproteins were mainly involved in immune function, whereas bovine mature MFGM phosphoproteins were mainly involved in metabolic function. Plasminogen and osteopontin were the most strongly interacting proteins in colostrum, whereas perilipin-2 was the most strongly interacting protein in bovine mature milk. This work demonstrates the unique alterations in the phosphorylation manner of the bovine MFGM protein during lactation and further expands our knowledge of the site characteristics of bovine MFGM phosphoproteins. This result confirms the value of MFGM as a reference ingredient for infant formula during different stages.


Assuntos
Colostro , Glicoproteínas , Leite , Feminino , Gravidez , Lactente , Humanos , Animais , Colostro/metabolismo , Perilipina-2/metabolismo , Leite/metabolismo , Glicolipídeos/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas do Leite/metabolismo , Caseínas/metabolismo
18.
Int J Biol Macromol ; 262(Pt 2): 129844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316325

RESUMO

Milk samples were collected from 3625 Chinese Holstein cows to assess the effects of κ-casein (κ-CN) and ß-lactoglobulin (ß-LG) genetic variants on its milk coagulation properties. The results show that Chinese Holstein cows have a higher frequency of the κ-CN AA and AB variants, and ß-LG of the AB and AA variants. Of these, κ-CN B variants, the ß-LG AA and BB variants were more frequent in milk showing good coagulation. The effects of the genetic variants on milk composition, milk proteome, and protein phosphorylation sites were studied. The results showed that higher concentrations of protein and dry matter were found in κ-CN BE variant. Moreover, large variations in milk proteome among different κ-CN and ß-LG variants were observed. Highly phosphorylated for κ-CN, especially Ser97, was observed in cows with the κ-CN BE variant, but no effect of ß-LG variants on phosphorylation site was found. Of the various factors examined, variation of κ-CN phosphorylation sites Ser97 may be the most important in affecting casein structure and milk coagulation ability. Some milk protein contents were found to be negative factors for milk coagulation. In summary, this study showed that κ-CN genetic variants contained different milk compositions and phosphorylation site Ser97 influenced milk coagulation.


Assuntos
Leite , Proteoma , Animais , Feminino , Bovinos , Proteoma/metabolismo , Fosforilação , Leite/química , Proteínas do Leite/química , Caseínas/química , Lactoglobulinas/genética , Lactoglobulinas/metabolismo , Genótipo
19.
J Pediatr Gastroenterol Nutr ; 78(4): 836-845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38344848

RESUMO

OBJECTIVE: Analyze fecal and blood samples at point of diagnosis in IgE mediated cow's milk protein allergy (CMPA) and non-IgE mediated (NIM)-CMPA patients to look for potential new biomarkers. PATIENTS AND METHODS: Fourteen patients with IgE mediated CMPA and 13 with NIM-CMPA were recruited in three hospitals in the north of Spain, and were compared with 25 infants from a control group of the same age range. To characterize intestinal microbiota, 16S rDNA gene and internal transcribed spacer amplicons of bifidobacteria were sequenced with Illumina technology. Fatty acids were analyzed by gas chromatography, meanwhile intestinal inflammation markers were quantified by enzyme-linked immunosorbent assay and a multiplex system. Immunological analysis of blood was performed by flow cytometry. RESULTS: The fecal results obtained in the NIM-CMPA group stand out. Among them, a significant reduction in the abundance of Bifidobacteriaceae and Bifidobacterium sequences with respect to controls was observed. Bifidobacterial species were also different, highlighting the lower abundance of Bifidobacterium breve sequences. Fecal calprotectin levels were found to be significantly elevated in relation to IgE mediated patients. Also, a higher excretion of IL-10 and a lower excretion of IL-1ra and platelet derived growth factor-BB was found in NIM-CMPA patients. CONCLUSIONS: The differential fecal parameters found in NIM-CMPA patients could be useful in the diagnosis of NIM food allergy to CM proteins.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Hipersensibilidade a Leite , Lactente , Feminino , Animais , Humanos , Bovinos , Imunoglobulina E , Hipersensibilidade a Leite/diagnóstico , Proteínas do Leite
20.
J Pediatr Gastroenterol Nutr ; 78(4): 909-917, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374730

RESUMO

OBJECTIVES: Formulas made from hydrolyzed rice proteins (HRPF) are well-tolerated plant-based alternatives to cow's milk protein (CMP)-based formulas for the dietary management of paediatric patients with CMP allergy (CMPA). Growth in patients with CMPA fed with HRPF has been evaluated in several studies with conflicting results. The aim was to evaluate the growth pattern of children with CMPA over a 12-month follow-up period. METHODS: Prospective cohort study evaluating growth patterns in challenge proven CMPA paediatric patients receiving HRPF for 12 months. Outcomes were anthropometry (body weight, body length, head circumference), adherence to the study formula and occurrence of adverse events (AEs). RESULTS: Sixty-six children were included and completed the 12-month study. At baseline, all CMPA patients were weaned. For the entire CMPA pediatric patients' cohort, from baseline to the end of the study period, the growth pattern resulted within the normal range of World Health Organization (WHO) growth references. The formula was well tolerated. Adherence was optimal and no AEs related to HRPF use were reported. CONCLUSIONS: HRPF is well tolerated and can help support healthy growth and development in infants and young children with CMPA. These type of formula can be given with complementary foods in the dietary management of CMPA.


Assuntos
Hipersensibilidade a Leite , Oryza , Lactente , Animais , Feminino , Humanos , Criança , Bovinos , Pré-Escolar , Estudos Prospectivos , Proteínas do Leite , Hidrolisados de Proteína/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...